A Computational Database System for Generating Unstructured Hexahedral Meshes with Billions of Elements
نویسندگان
چکیده
For a large class of physical simulations with relatively simple geometries, unstructured octree-based hexahedral meshes provide a good compromise between adaptivity and simplicity. However, generating unstructured hexahedral meshes with over 1 billion elements remains a challenging task. We propose a database approach to solve this problem. Instead of merely storing generated meshes into conventional databases, we have developed a new kind of software system called Computational Database System (CDS) to generate meshes directly on databases. Our basic idea is to extend existing database techniques to organize and index mesh data, and use database-aware algorithms to manipulate database structures and generate meshes. This paper presents the design, implementation, and evaluation of a prototype CDS named Weaver, which has been used successfully by the CMU Quake project to generate queryable high-resolution finite element meshes for earthquake simulations with up to 1.22B elements and 1.37B nodes.
منابع مشابه
Extracting Hexahedral Mesh Structures from Balanced Linear Octrees
Generating large 3D unstructured meshes with over 1 billion elements has been a challenging task. Fortunately, for a large class of applications with relatively simple geometries, unstructured octree-based hexahedral meshes provide a good compromise between adaptivity and simplicity. This paper presents recent work on how to extract hexahedral mesh structures from a class of database structures...
متن کاملQuadrilateral and Hexahedral Element Meshes
This chapter explains techniques for the generation of quadrilateral and hexahedral element meshes. Since structured meshes are discussed in detail in other parts of this volume, we focus on the generation of unstructured meshes, with special attention paid to the 3D case. Quadrilateral or hexahedral element meshes are the meshes of choice for many applications, a fact that can be explained emp...
متن کاملValidating and generating curved unstructured hexahedral meshes
We present a new definition of distortion and quality measures for high-order hexahedral (quadrilateral) elements. This definition leads to two direct applications. First, it can be used to check the validity and quality [1] of a high-order hexahedral (quadrilateral) mesh. Second, it allows the generation of high-order curved meshes [2, 3, 4, 5] composed of valid and high-quality hexahedral (qu...
متن کاملEffects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.
A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes tha...
متن کاملAn Imprinting Algorithm to Insert Geometric Details into Hexahedral Meshes
In numerous computational engineering applications, hexahedral meshes may be preferred over tetrahedral meshes. However, automatic hexahedral meshing remains an unsolved issue and thus generating a hexahedral mesh is known as a time-consuming stage that requires a lot of user interactions in the simulation process. A possible way for designing and optimizing a CAD model or a geometric shape req...
متن کامل